INFORME-SE SOBRE A QUÍMICA

Eduardo Leite do Canto

Autor de Química na Abordagem do Cotidiano – Editora Saraiva

Como criar um gráfico a partir de uma fórmula?

Finalizando a série sobre gráficos digitais, fornecemos um método bastante útil.

Suponha que, em uma solução em equilíbrio com PbCl₂ sólido, haja também Cl⁻ proveniente de outra fonte. Vamos fazer um gráfico para mostrar como [Pb²⁺] varia em função de [Cl⁻]. Isolando [Pb²⁺] na expressão do K_S, chegamos a [Pb²⁺] = K_S / [Cl⁻]², em que K_S vale $2 \cdot 10^{-5}$, a 25°C. No Excel, digite o que está mostrado a seguir. Use os botões destacados para poder mostrar duas casas decimais.

Selecione as células de A2 a A4. Posicione o cursor sobre o quadradinho preto no canto inferior direito da seleção. Ele se tornará um "+" fino e preto. Clique e arraste até a célula A17.

O programa detecta o incremento regular de 0,02 usado e preenche automaticamente as células. Se necessário, acerte o número de casas decimais para duas. Em B1, digite [Pb2+]. Em B2, digite a fórmula = $(2*10^{-5}) / (A2^{2})$ e tecle **Enter**.

A célula agora exibe o resultado do cálculo $K_S/[Cl^{-}]^2$, usando o valor de $[Cl^{-}]$ da célula A2. Selecione a célula B2, clique com o direito, escolha **Formatar célula**, clique em **Científico**, escolha 1 casa decimal e dê **OK**. Com B2 selecionada, coloque o cursor sobre o quadradinho preto no canto inferior direito da seleção, clique e arraste até B17. O programa copia a fórmula para todas as células, alterando, a cada nova linha, a referência a A2 para A3, A4, A5 etc. Para criar o gráfico, selecione as células A1 até B17 e proceda como descrito no boletim nº 51.

	А	В			А	В
1	[CI-]	[Pb2+]		1	[CI-]	[Pb2+]
2	0,10	2,0E-03		2	0,10	2,0E-03
3	0,12			3	0,12	1,4E-03
4	0,14			4	0,14	1,0E-03
5	0,16	A cé	lula B2	5	0,16	7,8E-04
6	0,18	COL	ntém a	6	0,18	6,2E-04
7	0,20	IOI	mula:	7	0,20	5,0E-04
8	0,22	=(2*10/	^-5)/(A2^2)	8	0,22	4,1E-04
9	0,24	O aue	é exibido	9	0,24	3,5E-04
10	0,26	em	B2 é o	10	0,26	3,0E-04
11	0,28	resu	ltado do	11	0,28	2,6E-04
12	0,30	cá	lculo	12	0,30	2,2E-04
13	0,32	exe	cutado	13	0,32	2,0E-04
14	0,34	COL	n essa	14	0,34	1,7E-04
15	0,36	101	rmula	15	0,36	1,5E-04
16	0,38			16	0,38	1,4E-04
17	0,40			17	0,40	1,3E-04

Nesse exemplo, usamos incrementos de 0,02. O valor deve ser adequado a cada caso, pois os incrementos muito pequenos congestionam o gráfico e os muito grandes podem ser inadequados para descrever a forma da curva.

Equilíbrio Químico —
v. 2, unidades H, I e J, e vu, cap. 23

Química na Abordagem do Cotidiano, 3 volumes. Química na Abordagem do Cotidiano, volume único.